
Gaussian Process Models for Simulation Analysis
(GPM/SA)

Command, Function, and Data Structure Reference

LA-UR-08-08057

James R. Gattiker
Los Alamos National Laboratory

gatt@lanl.gov

1 Introduction

This document describes the commands (functions) of the GPM/SA code package, the data
structures that these functions accept and generate, details on the technical underpinnings,
and some comments on command flow and usage. For details about how and why GPM/SA
is used, please refer to the associated document that goes through an example in detail [1],
and publications describing the modeling technology [2, 3].

The general motivation for this project is the analysis of computer models, and the
analysis of systems that have both computer simulations and observed data. The underlying
assumption is that experimental results are expensive or difficult to collect, though it is
possible to get simulation studies of the experimental problem in comparatively large, but still
restricted, quantities. Therefore a statistical model of system responses is to be constructed,
which is called a surrogate or emulator.

The emulator is constructed from an ensemble of simulation responses collected at various
settings of input parameters. The statistical model may be extended to incorporate system
observations to improve system predictions and constrain, or calibrate, unknown parameters.
The statistical model accounts for the discrepancy between the system observations and the
simulation output. Parameters of the statistical model are determined through sampling
their posterior probability with MCMC. The statistical model can then be used in several
ways. Statistical prediction of simulation and observation response is relatively fast and
includes uncertainty. Examination and analysis of the model parameters can be used for
calibration, screening, and analysis of model properties. The emulator may be further used
for sensitivity analysis, and other system diagnostics.

Before using the GPMSA package, the analysis problem will have been defined, including:
collecting system observations; determining uncertain simulation parameters; establishing a

1

design over the simulation parameters and running an ensemble of simulations; considering
an appropriate model for dimension reduction of the observation and simulation response;
considering an appropriate model for the discrepancy between simulation and observation;
and considering prior model parameter settings related to these issues. These general issues
are covered in the publication and tutorial references in the bibliography.

The first sections of this manual will describe the interface to functions a user might
be concerned with, along with some comments about the data and parameters involved.
Following sections describe the concepts and some details of the model.

2 Simulation Analysis Framework (SAF) Project: Ob-

taining, Installing, and Development

2.1 Project

The GPM/SA code is developed and maintained by the CCS-6 group at Los Alamos National
Laboratory. Version 2.0 of GPM/SA is LANL computer code release LA-CC-06-079, which
is open source under (C-06, 144).

The project is maintained in LANL’s SourceForge system, which hosts documentation
and latest release bundles of code, trackers for issues and future requirements, as well as
a CVS repository of the source code. Development of GPM/SA is currently supported
by a small number of LANL CCS-6 group members working closely in physical proximity
(therefore style and coding standards are a matter for direct discussion by the development
team).

The chief requirement for the GPM/SA code is to implement the technology described in
[2]. The system can be best thought of as a set of tools extending the Matlab interactive data
analysis environment. As such, the expectation is that the tools run on a desktop system
in an interactive mode. Using the GPM/SA tools will require a fair amount of customized
user setup, and one would expect customized post-processing to derive results relevant to a
specific application problem.

2.2 Testing

The system has been vetted through use in a number of application problems, most of which
contain proprietary data. Internally, we maintain a suite of examples that are suitable for
examining and exercising various aspects of the code package. The results of the code are
stochastic, so acceptance of result correctness is not a matter of duplicating results inden-
tically, but rather generating results that are consistent with previous runs and internally
consistent with respect to the problem. Thus, acceptance of results is a matter of judgement
of an expert in this technology domain.

2

2.3 Platforms and Requirements

GPM/SA is a set of Matlab functions, requiring no toolboxes. Matlab is an interactive data
analysis system that runs on several platforms including Windows, Mac OS X, Linux, and
other versions of Unix. A C++ program is also available, that allows the computationally
intensive MCMC parameter sampling to execute on a system not hosting Matlab. The C++
code depends on the GNU Scientific Library (GSL) and the GSL’s C templates to interface
to a BLAS library.

2.4 Obtaining

Users with access to LANL’s SourceForge server can download the latest source code and
documentation from the SF4 server. Other users should contact the development team.

2.5 Installing

The installation of the basic package is straightforward: download and expand the directory
containing the functions, and add the directory to the Matlab path.

To use the C++ version of the MCMC sampling function, the code must be compiled
on the platform. This facility is a stand-alone piece of code interfacing through text files
for input and output, and does not need to be compiled with matlab. The installation is to
download and expand the directory containing the code files, and then compile them as, e.g.
on the LANL Flash environment:

g++ -lgsl -lgslcblas -I <directory> -o gpmsa main.cpp

As above, the compilation will require the GNU Scientific Library (GSL) and a BLAS.

3

3 Using the GPM/SA Code

The GPM/SA code is implemented in Matlab, and requires Release 14. This description
assumes a basic familiarity with Matlab.

There are two basic functions of the code: calculation of parameters of the statistical
model, and obtaining predictions from the model. The required input data structures will
be described.

3.1 Overview of Flow and Commands for GPM Modeling

The first step in using the GPM/SA code is to format the required observation and com-
puter code data. This data specification is described in detail in Section 4. This input is
summarized in two Matlab structures: simData , containing and describing the simulation
runs; and obsData , containing and describing the empirical observations. The obsData and
simData structures are parsed by setupModel , and an expanded structure is returned that
contains various substructures used in processing. This command would be executed as:

> params=setupModel(obsData,simData);

After this setup is complete, the model parameters are sampled (determined) with the
gpmmcmc function, which accepts the params output from setupModel . It returns that
same structure plus the mcmc draws of the statistical model parameters and the unknown
simulation parameters. This structure may then be passed to gpmmcmc again to append new
draws. This command would be executed as:

> pout=gpmmcmc(params,1000)

to perform 1000 mcmc draws of the model parameters. Another 500 draws could be appended
as:

> pout=gpmmcmc(pout,500)

In that example, the structure pout is used to hold the entire model including the added
draws, although there is no reason necessarily to keep a separate structure for params , as
they contain the same information.

The utility showPvals is a quick way to graph and examine the MCMC parameter draws,
which are stored in a substructure array of the pout struct called pvals . The command:

> showPvals(pout.pvals)

displays all the parameters. This substruct array can be indexed to examine specific values,
as in:

4

> showPvals(pout.pvals(1000:end))

This provides a visual diagnostic of MCMC convergence and stability, as well as a look at
parameter values. Default parameters for the MCMC are supplied, though it is of course
possible that these will not suit a particular problem. MCMC parameters are discussed in
the Section 4.

The gPredict function produces predictions from the model, given a set of MCMC draws
and data locations. This will be described in more detail in Section 5, and in the detailed
example problem. Other uses of the calibrated statistical model include diagnostics such as
cross-validation such as with gXval and sensitivity analysis with gSens .

3.2 Using the C++ Code for MCMC

The GPMSA package can optionally use a C++ implementation of the MCMC procedure for
generating posterior draws from the GP model’s parameter distribution. First, the model is
written from the Matlab environment to a text file using the Matlab command writeModel .
Then the draws are executed by running the command-line gpmsa , with arguments of the
model datafile, the output draws datafile, and the number of draws. The draws (parameter
values) are read back into the Matlab environment for post-processing using the Matlab
command readPvals .

5

4 Variables and Data Structures

This section describes the contents of common data structures used in the GPM/SA code
package. These structs represent encapsulated information that will be passed as arguments
or received as results. At a minimum, the dataset structures must be understood in order
to be populated by the user.

The following are definitions of variables and sizes used in GPM/SA and this manual:
x independent variable(s), associated with observed data
z same type and size as x, but associated with simulations
p length x and z vectors
t independent vars associated with simulations but not observations
θ variables corresponding to t, to be calibrated for observations
q length of t and θ vectors
n number of observed data
m number of simulations
y native space, dependent variable (may be designated obsi or sim)
yStd normalized dependent variable (may be designated obsi or sim)
l length of y (may be designated obsi or sim)
K response linear mapping matrix (may be designated obs or sim)
u transformed dependent variable for observations (through K matrix)
w same as u, but where u denotes observations, w denotes simulations
pu length of transformed simulation response (e.g., number linear basis functions)
D discrepancy linear mapping matrix (may be designated obs or sim)
v transformed discrepancy dependent variable
pv length of transformed discrepancy (e.g., number of linear basis functions)

6

4.1 obsData

Contains the experimental observations and related basis transformation matrices. obsData is
a struct array, one element for each empirical/observed data example. It is a struct array
rather than matrices because observations may not be on the same grid, and so may be of
different sizes. Each element of the struct array contains these fields:

field description size
x independent variable(s) in range [0,1] vector, p
yStd standardized (mean 0 var 1) response data vector, lobsi

Kobs response transform matrix lobsi
by pu

Dobs discrepancy transform matrix lobsi
by pv

Sigy covariance of observed data square matrix lobsi

The data in obsData are scaled and standardized so that x are in the interval [0,1] and
yStd are distributed N(0, 1). An x variable is required; if there are no x-type variables in
the problem it should be set to a constant value, e.g. 0.5, for the observation example(s).
obsData and simData (below) should have the same scaling.

The Sigy matrix is the covariance of the observed data examples. If it is not supplied,
it is assumed to be identity. This is typically a diagonal matrix of representing observation
error.

Postprocessing of model predictions requires additional information to return to native
space, so the following additional fields in the substruct orig are suggested in order to return
to the original problem domain:

field description size
y original (raw) response data vector, lobsi

ymean mean of y used to calculate yStd vector, lobsi

ysd sd of y used to calculate yStd vector, lobsi
or scalar

Dsim discrepancy transform for predictions on the sim grid lsim by pv

7

4.2 simData

simData contains the simulation dataset, and is a non-array struct. It is assumed that the
simulation data conforms to a single consistent grid, and so the examples are expected to be
collected into a simpler matrix form, rather than requiring the more complex struct array of
the observed data. Required fields are:

field description size
x independent variable(s) in range [0,1] m by p+ q
yStd standardized (mean 0 var 1) response data lsim by m
Ksim response transform matrix lsim by pu

The data in simData is standardized so that x are in the interval [0,1] and yStd are
distributed N(0, 1). An x variable is required; if there are no x-type variables in the problem
it should be set to a constant value, e.g. 0.5, for the simulations. Postprocessing of model
predictions requires additional information to return to native space, so the following addi-
tional fields in the substruct orig are suggested in order to return to the original problem
domain:

field description size
y response data lenysim

by m
ymean vector mean of y used to calculate yStd lsim
ysd sd of y used to calculate yStd lsim or scalar

4.2.1 K and D matrices

The standardized y data is transformed by the suppliedK andD matrices by the setupModel func-
tion. These linear transforms of the data are intended to be used to reduce the data car-
dinality. In typical GPM/SA operation, the K matrix is composed of principal component
analysis (PCA) or canonical correlations derived variation vectors, and the D matrix is a
smooth gaussian kernel decomposition (or, e.g., spline). The discussion below assumes this
choice of models, though any linear transformation is possible.

The K matrix is computed as the principal component weights on the standardized
simulation data, where only the first pu eigenvectors are retained. pu is chosen to reduce
data size as much as possible while retaining as much of the data variance as required. The
resulting transform matrix is Ksim. Kobs is produced from Ksim by interpolation between
the simulation and observation grids.

The transform matrix Dobs models the residuals of the observations, i.e. the discrepancy,
as that data is modeled by the Ksim matrix. A Gaussian kernel model is constructed over
the data range. The key features of this are kernel centers that cover the range, and kernel
widths that are appropriate for the kernel density (e.g., approximately 50% overlap of the
kernel functions). A corresponding Dsim, produced by the same kernel densities over the
appropriate data grid, can be produced and may be useful in some predictions and model
output, though it is not required for the model – in principle there is no role for a Dsim.

8

yobs = Ku+Dv

ysim = Kw

The K and D matrices should be scaled so that the variance of the w and v are approx-
imately 1.

9

4.3 params

Contains all information necessary to evaluate the model, and sample the posterior distri-
butions of parameters. params will contain the following substructs: data, model, priors,
mcmc, pvals , obsData , simData . obsData and simData are recorded exactly as passed
to setupModel .

4.3.1 params.data

The data struct holds processed information related to the input data, specifically the fields:
x, v, u, z, w, t. These are defined above.

4.3.2 params.model

The model struct holds information related to the current state of the model in the MCMC
chain, as well as precomputed data products. Most interesting components of this are
recorded in the pvals struct. There are two reasons to be interested in the model struct: to
both validate the values of model parameter values and data size parameters, and to change
these parameters. Interesting data size parameters include: n, m, p, q, pu, and pv, defined
above. Other fields should have self-explanatory naming. One reason to change these may
be to start the MCMC chain at a particular setting.

4.3.3 params.priors

The priors struct has substructures, one for each variable named in the mcmc struct svars ,
i.e., for each variable to be sampled, as discussed in the mcmc struct description.

Each struct contains a function name for the prior call, a params struct, and fields
bLower and bUpper that are hard boundaries for the value of the corresponding variable.
There are two exceptions: 1)the theta field contains the special field constraints , which
is the cell array of constraint strings discussed in the setupModel function description; 2)

the dual-domain field rhoU =e−
1
4
betaU are both listed. The bLower and bUpper fields are

defined under betaU , and the prior function and params are defined under rhoU .

If another prior function is to be supplied, the details of the corresponding parameter-
named field must be understood. As an example, the required fields (fname , params ,
bLower , and bUpper) for lamWs (for a problem where pu=3) are:

fname: ’gLogGammaPrior’

params: 3 0.003

3 0.003

3 0.003

bLower: 60

bUpper: 100000

10

The prior functions accept a value and a parameters array, which will be the corresponding
row of the params field; in the case of gLogGammaPrior these parameters are the shape and
scale parameters. Thus each of the three values of lamWs will be sampled, to compute the
prior, each will in this example called the function gLogGammaPrior with the parameter
array [0 0.003]. Also, if the value exceeds the bounds the prior will be taken to be -Inf.

4.3.4 params.mcmc

The mcmc struct contains fields which define the variables to be sampled and recorded, as
well as proposal width definitions.

The svars struct is a cell array naming the variables to be sampled. Corresponding
to this is a cell array with the field name wvars , which name the fields within mcmc that
are the widths of the proposal distribution. However, in the adaptive operation mode (as
opposed to the stepsize operation mode), adaptive choices are made for parameters that vary
in scale, specifically all other than theta , betaV , and betaU . There is a correspoding array
of integers in the field called svarSize , which describes how many elements there are in
each sampled variable, e.g. betaU has pu(p+ q) elements.

The pvars struct contains the names of variables to be recorded in the pvals struct.

4.3.5 params.pvals

The pvals struct is an array holding recorded MCMC draws of parameters specified in the
priors struct’s wvars field. When a GPM/SA component requires draws, they are taken
from the pvals struct, which may be indexed to not include all draws for either skipping
burn-in MCMC transient draws and/or sample the draws.

By default the fields in pvals will consist of one of two possibilities. An eta-only model
(including no observation data and thus no model discrepancy or valibration parameters)
will contain betaU , lamUz , lamWs , lamWOs , and lamOs , as well as the fields logLik ,
logPrior , and logPost . A full model will also contain theta , betaV , and lamVz .

11

4.4 hierParams

Contains all information necessary to augment the basic model into a hierarchical model,
evaluate the model, and sample the posterior distributions of hierarchical parameters. This
corresponds closely to the params struct, as should be evident from inspection. The function
setupDefaultHierParams provides an example of hierarchical parameters setup to copy and
modify.

12

4.5 pred

Contains predictions generated from the model by the gPredict function. There are two
formats for this struct, corresponding to whether the prediction was from gPredict invoked
in ’uvpred’ mode or ’wpred’mode .
Returned from gPredict invoked with ’wpred’ mode, the pred struct has the following fields:
field description
w a 3-d matrix of realizations, the first dimension indexes the number

of realizations, which is one per pval supplied; the second dimension
indexes the number of linear bases pu, the third dimension indexes the
number of points in xpred.

Myhat a matrix of the means of the models, of size (number of pvals) x
(sizeof-xpred x pu)

Syhat a cell array of covariance matrices corresponding to rows of Myhat.

For predictions from gPredict invoked in ’uvpred’ mode, the fields are:
field description
u a 3-d matrix of realizations from the eta component of the model, the

first dimension indexes the number of realizations, which is one per pval
supplied; the second dimension indexes the number of linear bases pu,
the third dimension indexes the number of points in xpred.

v a 3-d matrix of realizations from the discrepancy component of the
model, the first dimension indexes the number of realizations, which
is one per pval supplied; the second dimension indexes the number of
linear bases pv, the third dimension indexes the number of points in
xpred.

Myhat a matrix of the means of the models, of size (number of pvals) x
(sizeof-xpred x (pv+pu)

Syhat a cell array of covariance matrices corresponding to rows of Myhat.

13

4.6 predProcess

Contains processed predictions. Field names should indicate context from inspection of the
struct. There are 4 substructs possibly present, pc for basis response statistics, scaled

for native space scaled response statistics, mean0 for native space mean removed statistics,
and native for native response statistics. These will contain a field called eta for modeled
simulation response and delta for modeled discrepancy response. Under each of these fields
are fields named for a range of percentiles and mean.

14

4.7 sens

Contains sensitivity analysis results. The struct contains the following fields:
field description
totalMean overall output mean (posterior mean)
totalVar total output variance (posterior samples)
smePm main effect sensitivity indices (posterior mean)
stePm two-factor interaction effect sensitivity indices (posterior mean)
siePm two-factor interaction effect sensitivity indices (posterior mean)
sjePm joint effect sensitivity indices (posterior mean)
mef main effect functions by basis component (posterior mean and standard

deviation)
tmef main effect functions (posterior mean and standard deviation)
jef two-factor joint effect functions by basis component (posterior mean

and standard deviation)
tjef two-factor joint effect functions (posterior mean and standard devia-

tion)
sa structure with sensitivity analysis information by basis coefficient

e0 overall output mean (posterior samples)
vt total output variance (posterior samples)
sme main effect sensitivity indices (posterior samples)
ste total effect sensitivity indices (posterior samples)
sie two-factor interaction effect sensitivity indices (posterior

samples)
sje joint effect sensitivity indices (posterior samples)
mef main effect functions (mean and variance by posterior

sample)
jef two-factor joint effect functions (mean and variance by

posterior sample)

15

5 Command Reference

This section details the calling interface to the matlab functions supplied with the GPM/SA
code package.

5.1 User Commands

This section details commands that are normally of interest to a user of the GPM/SA
package.

16

5.1.1 gAnalyzePCA.m

Examine properties of the principal components analysis of a dataset.

Definition:
a=gAnalyzePCA(y,y1)

Input Arguments:
y dataset used for finding the principal components. This would typically

be the simulation response data
y1 (optional) a second dataset to also be analyzed. This would typically

be the observation response data

Output Arguments:
a the cumulative proportion of variance explained by the principal com-

ponents

Description: Produces two plots.
The first plot has two panels. The first is cumulative variance explained for all principal
components, the second is a zoom on the first 10 principal components. If the optional
dataset y1 is supplied, these panels are overlayed by the proportion of absolute residual
explained for both y and y1 datasets, using a given number of principal components; this is a
diagnostic of whether the observation data will be modeled well by the principal components.
The second plot is the first 5 principal components.

17

5.1.2 diagPlots.m

Some diagnostic plots that may be of general use. These may also be used as templates for
customization.

Definition:
result = diagPlots(params,pvec,plotType,optional-arguments)

Input Arguments:
params params struct, see the data structures section
pvec indices of which drawn MCMC samples to use in computation
plotType which plot option to perform, one of {1, 101, 2,3,4}, described below

Optional Arguments: Passed as tag/value pairs
’labels’ input variable names for plots
’labels2’ output variable names for plots
’figNum’ which matlab figure window to plot in (default is the plot number)
’evenWeight’ where relevant, a value of true indicates to not weight results by PC

weight
’ngrid’ where relevant, a grid size to pass to gPlotMatrix, when estimating

contours
’ksd’ where relevant, a kernel sd to pass to gPlotMatrix
’standardized’ where relevant, variables remain on the standardized scale

Output Arguments:
result in some options, some information is returned to the user. Examine

code for details.

Effect: This will give a brief description by plot type.
Plot type 1 is a boxplot of the ρU = e−

1
4
βU from the pvals specified, for each principal

component. The ρ values provide a diagnostic of model fit and variable importance. A ρ
near 1 indicates little response activity (though the variable may still be important), where
a value of ρ approaching zero indicates that the statistical model may not be adequately
modeling the simulation response.
Plot type 101 integrates the ρ values over the principal components, resulting in a single
ρ for each input variable x to the model. There is no perfect way to do this, the default
is to take a weighted mean by proportion of variance explained by the each PC, but if the
optional argument ’evenWeight’ is true then it is an unweighted mean.
Plot type 2 plots the distributions of the calibrated parameters θ, by forwarding the values
to gPlotMatrix. The plot shows a histogram of each distribution down the diagonal of a
2D grid. The joint effects are shown in the off diagonal entries. Un the upper triangle, the
data are plotted as points, color coded from blue to red with bluer being earlier in the chain.

18

The lower triangle contains an estimated density plot, with contours of estimated 50 and 90
percentile.
Plot type 3 plots combined λOS and λVz values, as these together indicate how much the
simulation model is regularized, and gives an indication of how important the simulation
data is.
Plot type 4 plots the calibrated discrepancy of the model. Don’t expect this plot to always
work (in particular, for observations on different grids), it requires cognizance of the native
response domain to work properly.

19

5.1.3 gpmmcmc.m

Generate MCMC draws of the parameters of a GPM/SA model.

Definition:
[pout Hpout]=gpmmcmc(params, numDraws, args)

Input Arguments:
params GPM/SA parameters structure (see data structures definitions). This

may be an array argument for linked models evaluation.
numDraws number of parameter set samples to draw

Optional Arguments: Passed as tag/value pairs
’noCounter’ True causes progress output to be suppressed
’step’ True involes step size mode (default is adaptive mode)
’initOnly’ Precompute data products, but execute no draws
’noInit’ execute draws, but don’t initialize and recompute data products. Used

when draws will be added to a previously sampled model.
’clist’ definition for shared calibration parameters across models. This is a

matrix, where each row defines a parameter (θ) shared between models.
The number of columns is the number of models, i.e., the length of
the params array. A zero in a column indicates the θ is not in the
corresponding model, a nonzero entry indicates the index of the θ in
the corresponding model.

’hierParams’ data structure for constructing and drawing from a hierarchical model
on a parameter to be calibrated. Refer to the section on data structure
descriptions

Output Arguments:
pout parameters structure augmented with draws in the pvals substructure,

and updated internal data structures
Hpout (if hierParams optional argument supplied) hierarchical model param-

eters structure augmented with draws

Effect: This function does the specified number of draws of the model parameters, includ-
ing, e.g., length scales β, calibration parameters θ, and process variance parameters λ, as
well as hierarchical model parameters, if defined. One draw with gpmmcmc performs one draw
on each parameter.

The output structures are the same as the corresponding input structures, except: 1)
the draws are added to the pvals structure, and 2) the internal state of the computational
products are updated. A new params structure is augmented with several computational

20

products (in the model substructure), unless specified otherwise with the ’noinit’ optional
argument, which is useful when sequential calls for 1 or a small number of draws may be
requested.

Adaptive step sizes are used for the λ variables. These steps are chosen according to
their location, with the acceptance criteria modified for non-symmetric moves. The step size
is 1

3
, or at a minimum 1. That is:

ss = max(1,
λ

3
) (1)

λ′ ∼ U(λ± ss) (2)

To compute the acceptance modification, we need the step size from the new location

ss′ = max(1,
λ′

3
)

The step correction is a, where the acceptance criterion for a draw is then modified to:

U(0, 1) <
p

p′
a

where

a =

{
0 : λ > λ′ + ss′
ss
ss′

: otherwise

The operation is intended to correct for asymmetry where a candidate λ is drawn so low in
its interval that is is impossible for the next draw to again reach up to λ. If this case is met,
the point is rejected, i.e., a = 0 guarantees rejection of the draw. Otherwise the value of a
is the ratio of step size, i.e., the probability that this case did not occur.

21

5.1.4 gPredict.m

Generate predictions from the posterior Gaussian process model.

Definition:
pred=gPredict(xpred,pvals,model,data,args)

Input Arguments:
xpred x locations at which to predict the model response
pvals an array of MCMC draws; taken from the pvals substruct
model the model substruct from the params struct
data the data substruct from the params struct

Optional Arguments: Passed as tag/value pairs
’mode’ one of:

’wpred’ predict from the simulation model only

’uvpred’ generate predictions of both the simulation and discrepancy
response

default: ’uvpred’ if observation data is present, ’wpred’ for an eta-only
model

’theta’ contains specific θ values to be used for prediction. If not present,
calibrated prediction is done: the theta used is the theta from the
pvals .

’addResidVar’ value of true directs to add the residual variance on the simulation
predictions. Default is false.

’returnRealization’ value of true directs that a realization will be computed and returned
for each prediction. Default is true.

’returnMuSigma’ value of true directs to return the mean vector and covariance matrix
in the predict struct. default is false.

Output Arguments:
pred a structure containing a number of prediction products appropriate to

the prediction mode, see section on data structures.

Effect: Perform predictions from the posterior Gaussian process model, in a number of
modes, as specified in the input argument description. The predictions from gPredict are
the linear basis weights; to achieve system predictions the output of gPredict must be
returned back to the scaled and unscaled native space (as desired).

22

In general, the process is to make a GP posterior prediction model for the locations in
[xθ], and to produce a realization from that model for each parameter set in the supplied
pvals . As described, the θ variables may either be supplied, or not supplied and therefore
taken from the pvals structure for calibrated prediction. Also included in the output are
the model mean and covariance for each instance of pvals .

The predictions can be one of two modes, ’wpred’, or ’uvpred’, with output fields appro-
priate to the particular selection.

’wpred’ mode is used to get predictions from only the simulation model, but in the case
where a fill model with simulation and observation data has been calibrated.

’uvpred’ returns predictions from both the simulation and discrepancy model compo-
nents, using the supplied θ or calibrated θ.

23

5.1.5 gPred.m

A deprecated interface to gPredict , to generate predictions from the posterior Gaussian
process model. It should not be used in new code implementations.

Definition:
pred=gPred(xpred,pvals,model,data,mode,theta)

Input Arguments:
xpred x locations at which to predict the model response
pvals an array of MCMC draws; taken from the pvals substruct
model the model substruct from the params struct
data the data substruct from the params struct
mode ’uvpred’, ’wpred’, or ’etamod’
theta optional, if specified these are theta values to predict, if not calibrated

prediction is performed using theta values from supplied pvals .

Output Arguments:
pred a structure containing a number of prediction products appropriate to

the prediction mode, see section on data structures.

Effect: Consistent with gPredict .

24

5.1.6 gPredProcess.m

Produce several products of typical interest in model predictions.

Definition:
predProcessed=gPredProcess(params,pred)

Input Arguments:
params parameters structure for the model
pred predictions from gPredict

Output Arguments:
predProcess a structure containing a number of processed products of raw predic-

tions

Effect: The linear basis weights over prediction locations is not usually the final answer of
interest. gPredProcess uses the raw predictions to produce 5,10,20,50,80,90,95 percentile
and mean of the PC loadings and the native-scaled space, and if possible the native-mean-
zero-unscaled space, and native space. The latter are possible if the params structure optional
fields are set up in the suggested manner so that the mean and standard deviations are
available. (also, they must be either points or vectors).
Refer to the data structures section for details on the output structure.

25

5.1.7 gSens.m

Compute sensitivity functions and indices

Definition:
sens=gSens(pout, optional-arguments)

Input Arguments:
params params structure for a calibrated model

Optional Arguments: Passed as tag/value pairs
’pvec’ the indices of the pvals to be used in analysis (default = all)
’ngrid’ number of grid points in each dimension for calculation of main/joint

effect functions (default 21)
’varlist’ matrix with pairs of variables in each row for which joint effects are

desired; value of ’all’ indicates to compute joint effects for all pairs of
variables; (default - empty matrix)

’jelist’ cell array with row vectors indicating variables for which joint sensitiv-
ities are desired (default - empty)

’rg’ matrix with one row for each variable, giving min/max values for sen-
sitivity calculations assuming unit hypercube scaling (default - unit
hypercube)

’option’ sensitivity calculations based on

• ’mean’ - posterior mean GP parameters

• ’median’ - posterior median GP parameters

• params - user provided GP parameters; must have betaU, lamUz
and lamWs fields (row vectors)

• (default - empty)

Output Arguments:
sens sensitivity results structure, refer to data structures section for detail

Effect: By sampling the posterior models for the given parameter draws, do a classical
sensitivity analysis on main and pairwise effects.

26

5.1.8 gXval.m

Some options for cross validation; and at least a template for coding customized cross-
validation. Note that there are limited general options, since native space cross-validation is
generally not defined.

Definition:
h=gXval(params, pvec,optional-arguments)

Input Arguments:
params a params struct with drawn pvals

pvec pvals to be used in the cross validation analysis

Optional Arguments: Passed as tag/value pairs
’mode’ what type of analysis and plot to perform, one of:

• ’PCplot’ - (default) plot each PC response

• PCplotOrder’ - plot of each PC response in canonical order in a
boxplot

• ’residErr’ - prediction accuracy of a multivariate response (which
will be a problem if the result is highly multivariate)

• ’residSummary’ - residual summary from each holdout validation
run, integrated over all multivariate responses.

’numSamp’ number of the points to be drawn for the cross validation (default - size
of dataset)

’figNum’ figure number to plot in
’standardized’ in native space modes, a value of true indicates to work on the stan-

dardized scale, otherwise it’s the unscaled response (default false). Note
that unscaled computation requires mean and standard deviation to be
in their suggested optional location.

’labels’ in some cases, allows a cell array of supplied labels to be applied to a
plot (sorry, you’ll have to examine the code for details).

Output Arguments:
h see code; in some cases this is handles to the plots, in other cases it’s

the error measure of the cross-validated points.

Effect: Generally, this performs a number of predictions, holding out each specified sample
(default is all points in the dataset, but this may be limited by the option described above).

27

Then, it analyzes and plots the results in different ways according to the specified mode.

28

5.1.9 readPvals.m

Read in parameter draws to the Matlab environment, from a text file generated by the C++
MCMC sampling routine. See the section on the C++ code for details on file structure.

Definition:
pvals=readPvals(filename)

Input Arguments:
filename the filename of the text file containing the parameter draws

Output Arguments:
pvals structure containing the parameter draws, (refer to the data structures

section)

Effect: Read in pvals structure from a text file generated by the C++ version of MCMC
sampling.

29

5.1.10 setupDefaultHierParams.m

Example of building a hierarchical parameters structure.

Definition:
hParams=setupDefaultHierParams()

Input Arguments:
none

Output Arguments:
hParams a hierarchical parameters structure (refer to data structures section)

Effect: An example of setting up hierarchical parameters. Sets up variable designations
between models, initial parameters for the hierarchical distribution (normal distribution
parameters mean and precision), priors for the meta-parameters (normal for the mean pa-
rameter, gamma for the lambda parameter), and MCMC sampling control parameters.

30

5.1.11 setupModel.m

Accepts a data descriptor and sets up a full params structure for the GPM/SA model.

Definition:
params=setupModel(obsData, simData,optParms)

Input Arguments:
obsData observation data struct, efer to data structures section for detail. This

parameter is optional, if it is an empty matrix an eta-only parameters
structure is generated

simData simulation data struct, refer to data structures section for detail.
optParms a structure containing optional information (this parameter is optional)

in substructs:

• scalarOutput - must be present if the response is scalar.

• lamVzGroup - indicates that the v responses are not governed by
a single λVz , but are instead composed of groups of parameters,
each of which has a separate parameters. If supplied, the value of
this is a vector of length pv, composed of integers from 1 to the
number of groups. A group is the v responses corresponding to
positions with the same integer value in lamVzGroup .

• priors - this may contain substructs lamWOs.params and
lamOs.params. The priors for these variables will take these val-
ues, if supplied. See the data structures section for details on the
prior parameters substructures.

• thetaConstraints - this is a cell array of strings, each of which
will be evaluated in an envirionment where the vector named
theta exists. All of these strings must evaluate to true in order
for a draw on the θ calibration parameters to be accepted. This
is a way to allow a general constraint on the joint values of theta.
Initialization of the θ parameters will be randomly drawn until
these are all true.

Output Arguments:
params a parameters structure, refer to the data structures section.

Effect: Accept the observation and simulation data structures, transform through the lin-
ear basis specification supplied in those structures, and set up the model parameters struc-

31

ture, including these operations:

• map the simulation data ysim into w with the supplied Ksim.

• map the observation data yobs into u and v with the supplied Kobs and Dobs.

• set up initial parameter values

• precompute some model products, primarily distances that will be used repeatedly

• compute Λobs, the u and v spatial correlation

• set the default prior distribution types and parameters, including modification of λOs
and λWOs, due to the basis transformations.

• set up prior bounds on parameter ranges

• set supplied theta constraints, if supplied, and draw initial values satisfying constraints

• set MCMC parameters: variables to be sampled, variables to be recorded, and default
step sizes.

The default prior parameter values are:
parameter initial value description
theta 0.5 theta parameters vector
betaV 0.1 discrepancy response basis scaling

vector
lamVz 20 marginal discrepancy precision

(possibly of groups)
betaU 0.1 simulation response basis scaling

vectors
lamUz 1 marginal simulation precision
lamWs 1000 simulations data precision
lamWOs mean of prior, min value 100 simulations noise precision
lamOs mean of prior, min value 20 observed data noise precision

The default prior distributions (see the data structures section for details on the location
of these specifications) are:

32

substruct
variable
name

distribution func-
tion fname

params and initial
values

bounds substruct names
and initial values

lamVz gLogGammaPrior .params(:,1)=1 .bLower=0.3
.params(:,2)=10−5 .bUpper=∞

lamUz gLogGammaPrior .params(:,1)=5 .bLower=0.3
. params(:,2)=5 .bUpper=∞

lamWOs gLogGammaPrior .params(:,1)=5 .bLower=60
.params(:,2)=5 ×
10−3

.bUpper=105

lamWs gLogGammaPrior .params(:,1)=3 .bLower=60
.params(:,2)=3 ×
10−3

.bUpper=105

lamOs gLogGammaPrior .params(:,1)=1 .bLower=0
.params(:,2)=10−3 .bUpper=∞

rhoU gLogBetaPrior .params(:,1)=1 calculated as beta
.params(:,2)=0.2

rhoV gLogBetaPrior .params(:,1)=1 calculated as beta
.params(:,2)==0.2

betaU calculated as rho .bLower=0
.bUpper=∞

betaV calculated as rho .bLower=0
.bUpper=∞

theta gLogNormalPrior .params(:,1)=0.5 .bLower=0
.params(:,2)=10 .bUpper=1

.constraints={}

Basis Transformation Prior Parameter Value Modification in setupModel Output
The basis transformation affects what the values of some of the parameters should be, because
of the relative rescaling. This section outlines which variables are changed, and how.

lamOs Prior Modification The Γ parameter 1 is modified from its default by adding to
it half of the difference between the original observation response elements and the number
of elements in the u and v basis space. That is:

aCorr =
1

2

((
n∑
i=1

|Y i
obs|

)
− npupv

)
using the cardinality (length) operator | · |. The second parameter is corrected by adding to it
the half sum square residual between the scaled data observations and their reconstructions
from the transformed space, modified appropriately by Λy = Σ−1

y (which is I if not specified).
That is:

bCorr =
1

2

n∑
i=1

(DKi · vui − y)TΛy(DKi · vui − y)

33

lamWOs Prior Modification The lamWOs priors are modified in a similar way to the
lamOs priors, except using the simulation data rather than the observed data. Because the
simulation data is of uniform size, the computation is easier:

aCorr =
1

2
(|Ysim| − pu)m

bCorr =
1

2

m∑
j=1

(KWj − Y j
sim)T (KWj − Y j

sim)

Once these are calculated, the initial values are set to the mean of the priors.

34

5.1.12 showPvals.m

Plot specified MCMC draws, for quick diagnostic.

Definition:
showPvals(pvals)

Input Arguments:
pvals a pvals array struct; substruct of params . See section on data struc-

tures for details.

Effect: Plots all the fields in the supplied pvals .

35

5.1.13 stepsize.m

Perform computations to optimize step size draws in the MCMC.

Definition:
[params hierParams]=stepsize(params,nBurn,nLev,optional-arguments)

Input Arguments:
params a params structure, refer to the data structures section.
nBurn number of step size analysis MCMC samples to draw
nLev number of levels to sample, to be used in fitting the step size optimiza-

tion model

Optional Arguments: Passed as tag/value pairs
’clist’ same as the clist argument to gpmmcmc
’hierParams’ same as the hierParams argument to gpmmcmc

Output Arguments:
params params struct augmented with step sizes computed
hierParams hierParams struct augmented with step sizes computed

Effect: Draws a number of MCMC samples from the model at different step sizes, and
uses the collected data on acceptance rates to estimate an optimal step size for each model
parameter being drawn with MCMC.
Performing step size optimization takes some time to draw samples, but the resulting opti-
mized step sizes should improve the quality of sampling.

36

5.1.14 writeModel.m

Writes the GPMSA model to a text file, to be used by the C++ version of the MCMC
sampling code. See the section on the C++ code for details of the text file structure.

Definition:
writeModel(params,filename)

Input Arguments:
params the params structure in the Matlab environment containing the model.

(see section on data structures for details)
filename the filename of the text file generated

Output Arguments:
none

Effect: Write a text file containing a complete model description, for use by the C++
version of MCMC sampling.

37

5.2 Internal and Utility Functions

This section describes briefly the purpose of functions supplied with the GPM/SA package,
but will in normal operation nor be directly invoked by a user. However, some of these are
utility routines that may be helpful. They will be defined as narrative rather than with a
detailed specification.

5.2.1 axisNorm.m

Called with an array of axis handles and a normalization mode; makes specified axis ranges
the same across plots.

5.2.2 computeLogLik.m

Computes the log likelihood for a given model.

5.2.3 computeLogPrior.m

Computes the log prior for a given model.

5.2.4 counter.m

Provides a standardized way to report progress through loops.

5.2.5 diagInds.m

Indices of the diagonal of a matrix (1-D form).

5.2.6 gBoxPlot.m

A substitute for the statistics toolbox’s boxplot command.

5.2.7 gCovMat.m

Generate a covariance matrix.

5.2.8 gGMICDF.m

Compute the inverse CDF of a Gaussian mixture.

38

5.2.9 genDist.m

Generate all manhattan distances between points in a given dataset.

5.2.10 genDist2.m

Generate all manhattan distances between points in two given datasets.

5.2.11 gLogBetaPrior.m

Compute a log beta pdf for given value and parameters.

5.2.12 gLogGammaPrior.m

Compute a log gamma pdf for given value and parameters.

5.2.13 gLogNormalPrior.m

Compute a log normal pdf for a given value and parameters.

5.2.14 gMvnrnd.m

Generate draw from a multivariate normal distribution (substitute for statistics toolbox’s
mvnrnd).

5.2.15 gNormpdf.m

Generate a draw from a normal pdf (substitute for statistics toolbox’s normpdf).

5.2.16 gPackSubplot.m

Place an axis on a figure window, with somewhat more flexibility than the subplot command.

5.2.17 gPlotMatrix.m

A replacement for matlab’s plotmatrix command, with additional options.

39

5.2.18 gQuantile.m

A substitute for the statistics toolbox’s quantile command.

5.2.19 gSample.m

Generates a random sample of size m without replacement from the integers 1:n.

5.2.20 parseAssignVarargs.m

Provides a simplified way for dealing with optional argument lists, as tag-value pairs. It
assigns the default-initialized variable with the name ¡tag¿ to the value ¡value¿.

40

6 C++ MCMC Sampling Operation Details

The core of the GPMSA code is determining the parameters of the GP emulator. Param-
eters are sampled from their posterior distribution using MCMC. This requires repeated
computation of a posterior distribution, which requires the computation of parameter priors
and the likelihood of the data given the parameter values. Determining prior probabilities
is straightforward. Determining the likelihood is a computation involving solving (in the
sense of inversion of) the model covariance matrix for a given set of parameters. This is a
computationally intensive operation that may be computed in the Matlab environment using
the function gpmmcmc , or it can be computed using the C++ program gpmsa .

6.1 Execution

The command is invoked as:

gpmsa <input-model-filename> <output-pvals-filename> <numDraws>

The argument input-model-filename is the name of the text file containing the model
data. This will have been generated by the writeModel command from the Matlab environ-
ment.

The argument output-pvals-filename is the name of the text file containing the result-
ing parameter draws. This will be read in to the Matlab environment with the readPvals com-
mand.

The argument numDraws is the number of MCMC parameter draws to perform.

6.2 Text File Description

The interface to the C++ code is the two text files described above. The contents of these
text files can determined in detail by looking at the simple read and write matlab func-
tions readPvals and writeModel . In overview, each text file begins with the model size
parameters n, m, p, q, pv and pu, which determine the sizes of all vectors and matrices.

The pvals text file further contains lines containing the complete model parameter set.
Complete detail is easily read in the readPvals function.

The model text file follows the size parameters with the data, the current state of the
MCMC chain (model parameters), the parameter prior parameters, and the MCMC control
parameters. The Matlab writeModel function may be examined for complete detail.

41

7 GPM/SA Model Details

The simplest Gaussian process (GP) models problem is: Given a dataset (X, Y), where
X = x1, ..., xn, each x possible vectors and Y = y1, ..., yn, determine an accurate model
y = f(x), so that for a new dataset X∗ one can determine Ŷ = f(X∗).

An additional level of complexity comes when there are two related independent vari-
ables In our applications, these are intended to be empirical observations of the independent
variable and predictions from simulations, and so will be labeled Xobs and Xsim, with cor-
responding Yobs and Ysim. The weak assumption that there is more data from simulations
than from empirical observations leads to a two part model structure: the first part models
principally the shape of the response surface and is driven by the simulation data, the second
models the discrepancy between the simulation model and the empirical observations, thus:

Ysim = f(Xsim)

Yobs = f(Xobs) + g(Xobs)

In modeling simulation and empirical data, we face the issue of uncalibrated parameters.
These are known independent variables input to the simulations, but which have no observ-
able (or even necessarily real) counterpart in the empirical observations. In observations,
they are unknown constants. These θ parameters must be determined. They are inputs to
functions of sim, but they are not present in the functions only of obs. The final model is
thus:

Ysim = f(Xsim, θ)

Yobs = f(Xobs, θobs) + g(Xobs)

Parameters to be determined are the parameterization of the functions f and g (as GP
models), and the value(s) of θobs.

7.1 Covariance Specification

The basic specification for gaussian process models is a covariance function, parameterized
but highly constrained. The covariance is Cov(x, β, λz, λs). The covariance is n× n, where
n is the number of examples in X, with elements:

Covij =
1

λz
e−d(xi,xj ,β)2 + I · 1

λs

d is a distance function, here taken to be the scaled Euclidean distance:

d(xi, xj, β) =
√
β · (xi − xj)2

This covariance specifies a dependence relationship on neighboring points, where the
correlation falls off as a gaussian distribution. The precisions λz and λs characterize the

42

data variance (as precisions) as the amount of data variance captured by the model, and
the amount of data variance captured by the residuals, respectively. In some cases the λs
parameter may not be specified, in which case the final term is ignored.

We also use in notation what we call the cross-covariance CCov(x1, x2, β, λz), which
provides the covariance between two different datasets:

CCovij =
1

λz
e−d(x1i,x2j ,β)2

7.2 Linear Basis Variable Reduction

In many problems the dependent variable will be multidimensional, and further in a space
that is prohibitively large to compute the model described. The solution is to reduce the
variables by a linear basis transformation, and compute the GP model on the basis coef-
ficients. The linear basis is theoretically arbitrary, though our convention is to choose a
principle component basis for the simulation response and a kernel decomposition basis for
the discrepancy response.

The notation for this spatial mapping is:

Ysim ≈ K · w
Yobs ≈ K · u+D · v

From the perspective of running the code, the matrices K and D are inputs specified by the
user.

The nature of the solution in the transformed space is biased compared to the original
space. The K and D matrices are needed in the modeling in order to correct this bias,
appearing as additional correlation terms on the gaussian matrix.

Model uv and w are generated by the least-square fit of the data to the basis.

The Σy term modifies the solution for the fit. In the absence of a Σy term:

vu = (DK ′ ·DK + I × 10−4)−1DK ′ · y

where DK is the concatenation of the Dobs and Kobs matrices. When the Σy term is
included, it’s inverse, the associated precision Λy is used as:

vu = (DK ′ · Λy ·DK + I × 10−4)−1DK ′ · Λy · y

This somewhat extended formulation is used in order to incorporate the regularization
“nugget” term for numeric stability.

This basis transformation bias extends also the modification of the initial values and
prior distribution parameters of certain model variables described in Section 5.1.11, as well
as a correction term Λobs, describing the modifications to the covariance that is necessary
to model the changed correlation structure of observed data the original space compared to
the results of the DK basis transformation. Λsim describes the corresponding correction for
the simulation examples due to the K transformation.

43

7.3 The GPM/SA Optimization Problem

The above describes elements of gaussian process models. The model calculated by this code
incorporates the extensions discussed, including the two-part solution of: a base model for
the simulation examples, and a discrepancy model that maps the simulation model to the
experimental data.

Constructing the statistical model is sampling the posterior distribution for the parame-
ters. The posterior is the priors on the parameters (as discussed) times the likelihood:

L =
1

|Σ|
1
2

e−
1
2

(vuw)T Σ−1(vuw)

where Σ is a matrix of spatial covariances and dependencies:

Σ = ΣS + ΣD

ΣS =

 Σv 0 0
0 Σu Σuw

0 ΣT
uw Σw

Each of these components of ΣS are block diagonal, the blocks are the covariance of the
components of the multidimensional v, u, and w.

Σv =

Σv∗

Σv∗
. . .

Σv∗

where

Σv∗ = Cov(Xdat, βv, λvz)

The number of blocks in the Σv matrix is pv, the number of basis components in v.

Σu =

Σu1

Σu2

. . .

Σupu

Where

Σui
= Cov(

(
x θ

)
, βui

, λuzi
) + I

(
1

λwsi

)
44

Σw =

Σw1

Σw2

. . .

Σwpu

Where

Σwi
= Cov(

(
z t

)
, βui

, λuzi
) + I

(
1

λwsi

)

Σuw =

Σuw1

Σuw2

. . .

Σuwpu

Where

Σuwi
= CCov(

(
x θ

)
,
(
z t

)
, βui

, λuzi
)

ΣD =

 Σobs
0
0

0 0 Σsim

Σsim = I

(
1

Λsimi
∗ λWOs

)
Σobs characterizes the dependence introduced by the transformation from the original Y
space into the {u, v} space, mentioned above as the precision matrix Λobs, and is scaled by
λOs as:

Σobs = Λ−1
Os

1

λOs

Our approach to generating the posterior statistical model is to sample parameter sets
from the posterior with Gibbs sampling. Compared to directly optimizing the likelihood,
the MCMC sampling approach has an advantage in establishing uncertainty on parameters
and then on predicted results.

45

7.4 Model Predictions

This model can be thought of an interpolating missing data from a set of X’s which are the
model and the prediction datapoints. This yields a converged covariariance:

Cov

(
X
X∗

)
=

(
Σ11 Σ12

Σ21 Σ22

)
The predictive model is then:

ŷ ∼ N(µŷ,Σŷ)

µŷ = µy + Σ21Σ−1
11 · (y − µy)

Σŷ = Σ22 − Σ21Σ−1
11 Σ12

References

[1] K. Myers, D.Higdon, J. Gattiker, E. Lawrence “Using the Gaussian Process Model for
Simulation Analysis Code: a tutorial example”, Los Alamos technical report xxx, 2008.

[2] Dave Higdon, Jim Gattiker, Brian Williams, Maria Rightley, ”Computer Model Calibra-
tion using High Dimensional Output”, Los Alamos Technical report LA-UR-07-1444, to
appear in the Journal of the American Statistical Association, 2007.

[3] Brian Williams, David Higdon, James Gattiker, Leslie Moore, Michael McKay, Sallie
Keller-McNulty, ”Combining Experimental Data and Computer Simulations, With an
Application to Flyer Plate Experiments”, Journal of Bayesian Analysis 1, no. 4, pp.
765-792, 2006.

46

